Adaptive Intelligence for Turn-based Strategy Games

نویسندگان

  • Maurice Bergsma
  • Pieter Spronck
چکیده

Computer games are an increasingly popular form of entertainment. Typically, the quality of AI opponents in computer games leaves a lot to be desired, which poses many attractive challenges for AI researchers. In this respect, Turn-based Strategy (TBS) games are of particular interest. These games are focussed on high-level decision making, rather than low-level behavioural actions. Moreover, they allow the players sufficient time to consider their moves. For efficiently designing a TBS AI, in this paper we propose a game AI architecture named ADAPTA (Allocation and Decomposition Architecture for Performing Tactical AI). It is based on task decomposition using asset allocation, and promotes the use of machine learning techniques. In our research we concentrated on one of the subtasks for the ADAPTA architecture, namely the Extermination module, which is responsible for combat behaviour. Our experiments show that ADAPTA can successfully learn to outperform static opponents. It is also capable of generating AIs which defeat a variety of static tactics simultaneously.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Opponent Modeling in Real-Time Strategy Games using Bayesian Networks

Opponent modeling is a key challenge in Real-Time Strategy (RTS) games as the environment is adversarial in these games, and the player cannot predict the future actions of her opponent. Additionally, the environment is partially observable due to the fog of war. In this paper, we propose an opponent model which is robust to the observation noise existing due to the fog of war. In order to cope...

متن کامل

Adaptive Spatial Reasoning for Turn-based Strategy Games

The quality of AI opponents often leaves a lot to be desired, which poses many attractive challenges for AI researchers. In this respect, Turn-based Strategy (TBS) games are of particular interest. These games are focussed on high-level decision making, rather than low-level behavioural actions. For efficiently designing a TBS AI, in this paper we propose a game AI architecture named ADAPTA (Al...

متن کامل

Artificial Intelligence for Adaptive Computer Games

Computer games are an increasingly popular application for Artificial Intelligence (AI) research, and conversely AI is an increasingly popular selling point for commercial games. Although games are typically associated with entertainment, there are many “serious” applications of gaming, including military, corporate, and advertising applications. There are also so-called “humane” gaming applica...

متن کامل

Adaptive Rule-Base Influence Function Mechanism for Cultural Algorithm

This study proposes a modified version of cultural algorithms (CAs) which benefits from rule-based system for influence function. This rule-based system selects and applies the suitable knowledge source according to the distribution of the solutions. This is important to use appropriate influence function to apply to a specific individual, regarding to its role in the search process. This rule ...

متن کامل

Goal-Directed Hierarchical Dynamic Scripting for RTS Games

Learning how to defeat human players is a challenging task in today’s commercial computer games. This paper suggests a goal-directed hierarchical dynamic scripting approach for incorporating learning into real-time strategy games. Two alternatives for shortening the re-adaptation time when using dynamic scripting are also presented. Finally, this paper presents an effective way of throttling th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008